
1

Object Oriented Programming (Java)

March 2023

Q.NO.1

a. For each of the following java expressions, provide the data type and

thevalue. Use the appropriate java literal to express the value.

Expression Type Value
1 + 2 int 3
100 * .015 double 1.5

true & false boolean true

“” + 3 + 2 String 32
½ + ½ int 0

Ans:-

Expression Type Value

1 + 2 int 3

100 * .015 double 1.5
true & false boolean false
“” + 3 + 2 String “32”
½ + ½ double 1.0

b. Explain the differences between an if statement and a while statement.

2

c. Write a switch statement to check the character grade and show the

Message based on the table below:

Grade Message
A Excellent
B, C Well Done

D You
Passed

F Try Again

Other
Grades

Invalid
Grade

Ans:-

3

d. Convert the following while loop to for

loop:int sum = 0;

int count = 3;

while (count<=

1000){Sum +=

count; Count

+= 3;

}

System.out.println(“Sum: ” + sum);

Ans:-

int sum = 0;

for (int count = 3; count <= 1000; count

+=3){Sum += count;

}

System.out.println(“Sum: ” + sum);

e. i. Write the java code to declare a variable of type string and initialize

it to“Whatever”.

Ans:

- Public class StringExample {

Public static void main(String[]

args) {String myString =

“Whatever”;

System.out.println(“My String:” + myString);

}

}

4

ii. What will be the output of the following

code?public class FinalExam1 {

public static void main(String[]

args){String S2 = “is taught”;

Boolean bEquals = S2.equals(“is

taught”);System.out.println(bEquals);

}

}

Ans:- true

Q.No. 2

a. Write a java class called CreditCard with the following description:

Instance variables/data members:

• name (String)

• balance (double)

• limit

(double)Member

methods:

• default constructor

• parameterized constructor

• getName()

• getBalance()

• chargeCard (double amount)

• makepayment (double amount)

• toString(

)Note:

• The first constructor should initialize name to null and balance to 0.

• The second constructor initializes name and balance to the

parameterspassed.

• chargeCard increase the balance.

• makePayment decreases the balance.

5

• toString() method returns card holder name and the current balance

separated by a comma; for example if name is jake and balance is

40.0 it should return jake, RM40.00.

Ans:-

6

b. Write a driver program called CreditCardApp that

• creates a CreditCard object called c1 and assigns “John” to its name

fieldand 1000 to balance field.

• Calls the chargeCard method with 500 to increase balance

• Calls the makePayment method with 300 to decreases the balance

• Calls the getBalance method to display the name and current balance

• Creates another object called c2 without passing parameters and

displaythe name and current balance for this object.

7

Ans:-

c. Draw a UML class diagram for the CreditCard class in

Ans:-

8

Q.NO. 3

a. Write a JAVA method that takes an array of integers as a parameter and

uses a for loop to find and return the minimum value integer in the array.

Just write the method, not a whole class or program.

Ans:-

b. i. Explain the difference between accessor (get) methods and mutator

(set)methods.

Ans:-

9

ii. Give one example of method declaration for mutator method and one

example of method declaration for accessor method in Java.

Ans:-

c. Explain what is wrong with the following overloading methods. If you

run theJava Compiler, what message are you likely to get?

public class Example {

public int sum(int a, int b);

public double sum(int a, int b);

}

Ans:-

10

d. Consider the following scenario:

An Employee Management System has to be created for a factory. The

requirements are as given below:

• All employee should report at the security to log the time when

thecome to duty and also log the out time when the leave factory.

• The security persons should check the register by end of the day

andcheck if any employee has not logged his time and should mark

absent.

• The accountant should calculate the number of days an employee

hasworked and should credit the salary to employee’s bank account.

• The employee will have an employee id, name, department, bank

account number etc.

The system should ask for an employee id, his in time and out time of a

dayand should give the details of number days an employee has worked.

Identify:

i. Any Two classes

ii. Any Two possible attributes for each class; and

iii. Any One operation for each class in the above scenario.

Ans:-

i. Classes:

1. Employee:

This class represents the information related to an employee.

2. AttendanceRecord:

This class represents the attendance record of an employee for a specific day.

ii. Attributes

Employee Class:

1. employeeId: An identifier for each employee.

2. name: The name of the employee.

3. department: The department in which the employee works.

4. bankAccountNumber: The bank account number for salary deposit.

11

AttendanceRecord Class:

1. employeeId: The identifier of the employee for whom the attendance

recordis being stored.

2. inTime: The time when the employee logs in.

3. outTime: The time when the employee logs out.

4. date: The date for which the attendance record is being stored.

iii. Operations

Employee Class:

1. calculateSalary(): This operation could calculate the salary for the

employee based on their attendance records and other factors. It

involves interactingwith the accountant class to credit the salary.

AttendanceRecord Class:

1. calculateWorkDuration(): This operation calculates the duration of work

for an employee on a particular day by subtracting the in time from the

out time. This information can be used to determine the number of days

an employee has worked.

Q.No.4

a.

i. What are two main reasons for using files?

Ans:- Two main reasons for using files:

1. Data Persistence: Files are used to store data persistently on storage

devices such as hard drives, solid-state drives, or external storage media.

This allows data to be saved even after a program exits or the computer is

turned off, ensuring that information is retained for future use.

2. Data Sharing: Files serve as a common medium for sharing data between

different programs and systems. By writing data to files, one program can

pass information to another, and files can be easily transferred over

networks, allowing for interoperability and data exchange.

12

ii. Give any two reasons for java.io.FileNotFoundExccception to be thrown at
run-time.

Ans:- Two reasons for `java.io.FileNotFoundException` to be thrown at

runtime:

1. File Not Found: This exception is thrown when an attempt is made to

access a file that does not exist at the specified file path. This can happen if

the file was deleted, moved, or if the path provided to open the file is

incorrect.

2. Insufficient Permissions: Another reason for `FileNotFoundException`

is insufficient permissions to access the file. If the program does not have

the necessary read permissions for the file or if the file is protected by the

operating system's security settings, this exception will be thrown when

attempting to access the file.

b. Write in java that reads a file named ‘infile.txt’ and copies it to a file

called ‘outfile.txt’.
Ans:-

13

c. A programmer was advised to decompose a large module into multiple
sub modules.

i. Explain any two reasons for this.
Ans:-

Improved Maintainability: Breaking a large module into multiple sub-
modules improves code maintainability for several reasons. First, it makes the
codebase more organized and easier to understand. Developers can focus on
smaller, more manageable pieces of code, which reduces the cognitive load
when working on the project. Additionally, when a bug or issue arises, it is
often easier to isolate and fix the problem within a smaller sub-module than
within a large, monolithic module. This modularity also facilitates code
reusability because sub-modules can be used in multiple parts of the project or
even in other projects, leading to a more efficient development process.

Parallel Development: Decomposing a large module into sub-modules allows
multiple developers or teams to work concurrently on different parts of the
project. Each sub-module can be assigned to a different developer or team,
reducing bottlenecks and speeding up the development process. This parallel
development approach can lead to faster project completion and better
utilization of development resources.

ii. Explain how java support modular programming

Ans:- Java introduced significant support for modular programming with the
release of Java 9 through the introduction of the Java Platform Module System
(JPMS), also known as Project Jigsaw. The JPMS provides tools and features for
creating modular applications in Java.

Here's how Java supports modular programming:
1. Modules: Java introduced the concept of modules, which allow developers to
encapsulate and organize code into discrete units. A module is a collection of
related packages, classes, and resources that can specify which parts of its code
are accessible to other modules and which are private. This promotes strong
encapsulation and helps avoid classpath conflicts.
2. Module Declarations: A module is defined by a module-info.java file, which
declares the module's name, dependencies on other modules, and what it
exports (makes available) to other modules. This declaration provides clear
boundaries and dependencies between modules, making it easier to manage
complex software projects.
3. Encapsulation: Modules allow you to control the visibility of classes,
methods, and other elements within a module. You can specify which classes
are accessible outside the module (public API) and which are for internal use
only. This encapsulation helps prevent unintended access and reduces
potential issues caused by changes to internal implementations.

14

4. Improved Dependency Management: With modules, Java provides a more
explicit way to declare and manage dependencies between different parts of
your application. This helps ensure that the required modules are available at
runtime and allows for more efficient packaging and distribution of Java
applications.
5. Modular JAR Files: Java 9 introduced the concept of modular JAR files,
which are JAR files containing module-info.class files. These modular JAR files
make it easier to distribute and deploy modular Java applications.
6. jlink Tool: The jlink tool allows you to create custom runtime images
containing only the modules your application requires. This reduces the size of
the runtime environment and helps eliminate unused code, resulting in more
efficient and optimized deployments.

